

Ms Charlina Vitcheva Director-General for Maritime Affairs and Fisheries European Commission Rue Josef II 99 1000 Brussels Belgium

Cc: North Sea Member States

Brussels, 18 August 2025

Advice Ref. 16-2425 NSAC Advice on 2026 Fishing Opportunities

This paper was approved by the NSAC Executive Committee on 18 August 2025 via the written procedure.

1 Background

On the 6th of June, the Commission released its Communication on the State of Play and Orientations for 2026¹. The Communication outlines progress towards sustainable fisheries and sets orientations for 2026. It reports a continued trend toward more sustainable fishing, with many stocks fished at or below maximum sustainable yield (MSY) levels across EU waters. The North Sea region, in particular, shows notable progress, although challenges remain.

The North Sea has seen a substantial reduction in fishing pressure. In 2023, average fishing mortality was 23% below the MSY target, compared to 65% above in 2003. Many stocks in the North Sea are jointly managed by the EU, UK, and Norway. Agreements for 2025 set total allowable catches (TACs) largely in line with MSY, demonstrating successful trilateral cooperation.

While fishing pressure has declined, broader pressures like climate change, pollution, and biodiversity loss affect fish stocks. For the North Sea, maintaining a healthy marine environment by addressing all pressures holistically is now essential to safeguard past sustainability gains.

The NSAC supports multiannual management plans (MAPs) as central to long term sustainability of fleets and ecosystems and stands ready to assist the Commission's efforts in aligning fishing limits with long-term sustainability goals. We also advocate for conducting

 $^{^{1}\,\}underline{\text{https://op.europa.eu/en/publication-detail/-/publication/91b1d5c9-42b5-11f0-b9f2-01aa75ed71a1/language-en}}$

Management Strategy Evaluations (MSEs) for critical stocks (such as cod) with a view to incorporate relevant ecosystem variables and test different harvest scenarios for long-term sustainability of this critical stock in mixed fisheries regime.

2 NSAC Advice

2.1 General observations

Scientific advice for the North Sea, Skagerrak, and Kattegat shows a generally positive trend, with many fish stocks being above biomass reference points. This status is supported by stronger stakeholder involvement throughout all stages of the advisory process including when requests for scientific advice are being developed, leading to a more systematic consideration of real-world observations and feedback from the fishing industry and other actors such as NGOs, thereby helping to advance ecosystem-based management.

While scientific advice is a critical foundation for policymaking, it should be seen as an iterative process with stakeholders providing important feedback. The NSAC underlines the importance of carefully examining the methodologies used in stock assessments. These assessments should be conducted with consistency, transparency, and scientific integrity, and management measures derived from them should aim to reflect, as accurately as possible, the complex natural dynamics of marine ecosystems.

The headline advice from ICES is often treated as the sole basis for decision-making. The NSAC would like to remind managers to consider the complete set of ICES advice instead, including the range of catch scenarios and risk-based options it provides. This broader view is essential to ensure balanced, evidence-based decisions that account for uncertainties and trade-offs. This is especially important considering choke species and ensuring that the current regulations in place make sense, can be complied with by fishers, and enforced by control authorities.

NSAC also calls for stronger integration of ecosystem-based considerations into fisheries management. Climate change is affecting fish stocks, with cod being a notable example, through changes in species distribution and abundance²³, marine food webs and ecosystem productivity⁴, as well as management and governance⁵. With this in mind, adaptation of the

² Brander, K. (2010). Impacts of climate change on fisheries. *Journal of Marine Systems*, *79*(3), 389-402. doi:10.1016/j.jmarsys.2008.12.015

³ Kjesbu, O. S., Alix, M., Sandø, A. B., & Strand, E. (2023). Latitudinally distinct stocks of Atlantic cod face fundamentally different biophysical challenges under ongoing climate change. *Fish and Fisheries, 24*(2). doi:10.1111/faf.12728

⁴ Skjærven, K. H., Alix, M., Kleppe, L., Fernandes, J. M., Whatmore, P., Nedoluzhko, A., . . . Kjesbu, O. S. (2024). Ocean warming shapes embryonic developmental prospects of the next generation in Atlantic cod. *ICES Journal of Marine Science*, *81*(4), 733-747. doi:https://doi.org/10.1093/icesjms/fsae025

⁵ Lotze, H. K., Bryndum-Buchholz, A., & Boyce, D. G. (2021). Chapter 8 - Effects of climate change on food production (fishing). In T. M. Letcher (Ed.), *The Impacts of Climate Change: A Comprehensive Study of Physical*,

distribution and focus of scientific trawl surveys will be needed, which may distort the data series. In this context, industry observations and local ecological knowledge are vital for detecting and responding to climate changes in real time and it should be explored how this information can be implemented better in scientific advice and management. Closer collaboration between scientists and industry—such as joint commercial surveys or year-round monitoring—could help reduce high variability in scientific advice and improve predictability for operators.

In addition, NSAC recommends that ICES benchmark processes expand their scope to include non-fishing impacts on fish populations. Factors such as climate, predation, foodweb interactions, and interspecific competition should be considered alongside fishing mortality to provide a more holistic picture of stock dynamics. For example, if biomass of highly predatory fish increases rapidly, while other stocks decrease in the same area, exceptional management option should be considered. One such consideration could be a targeted fishery for whiting in the North Sea to reduce predation of whiting on cod.

To this end, the NSAC supports the transition toward ecosystem-based fisheries management (EBFM) with equal consideration of socio-economic aspects alongside environmental ones to achieve full-spectrum sustainability. Embedding environmental and socio-economic realities into a longer-term, integrated framework would improve management stability and better reflect the complex nature of fisheries.

Importantly, we would like to voice serious concerns over ICES' delay in providing scientific advice for the most important stock for North Sea mixed fisheries, the North Sea cod. Such delays cause technical challenges for the management of fleets but also raise serious questions about the general agreement on the way this stock is perceived by the scientific community and on the way it is being managed by the managers. Internal disagreements expose intrinsic problems with the management of this stock with significant liabilities posed by the perception of the southern component – which we had also flagged before. All this will have implications for the credibility and relevance of ICES advice for this particular stock. The NSAC advocates for the setting of the TACs for cod in the North Sea for each of the three areas based on the advice for the specific area. NSAC questions the assumption that substocks mix to the extent that ICES assumes. For this reason, the NSAC supports genetic studies on cod from the three substocks that will better inform management decisions. The NSAC would like the managers to take note of the NSAC Advice on climate-informed management of North Sea cod⁶, calling for climate-informed management of this crucial stock, with Management Strategy Evaluations as the right opportunities to test climate scenarios.

We also note a delay in scientific advice for sole and for turbot in area 3a. We call on the Commission to provide the necessary support to ICES to minimize such incidents in the future.

Biophysical, Social, and Political Issues (pp. 205-231). Bath: Elsevier Inc. doi:https://doi.org/10.1016/B978-0-12-822373-4.00017-3

⁶ https://www.nsrac.org/wp-content/uploads/2025/02/05-2425-NSAC-Advice-on-climate-change-and-NS-cod.pdf

Finally, the NSAC welcomes again the Commission's openness to engage with stakeholders in the formulation of scientific advice requests, an engagement that began in 2024 and continued in 2025. We would be keen to explore, together with the Commission and other Advisory Councils, pragmatic ways forward in operationalising EBFM, and ensuring a formal and systematic engagement with stakeholders going forward. Stakeholder engagement is a critical component of the progress towards EBFM and the NSAC stands ready to assist Commission's services in addressing this nexus in a way that is efficient and effective, taking into account the increasing workload on both sides.

We kindly advise the European Commission to reflect on these overarching recommendations—as well as the specific stock-level considerations below— and bring them to bilateral and trilateral consultations as well.

2.2 Specific stock observations and advice

Haddock (North Sea, West of Scotland, Skagerrak (4, 6.a and Subdivision 20))

NSAC members observe a discrepancy between scientific recruitment estimates and industry observations. While assessments indicate low recruitment, the industry reports signs of high recruitment, particularly in light of the consistently high spawning stock biomass (SSB). Traditionally, juvenile specimens are observed in the western North Sea around Scotland; however, in recent years, they have also been seen in the eastern North Sea and Skagerrak, suggesting a possible shift in or expansion of spawning areas. Moreover, NSAC highlights concerns over the mismatch between the perceived health of the stock and the declining catch advice. NSAC suggests that the persistently low recruitment estimates may be influenced by environmental factors such as climate change, which warrant further investigation.

Lemon sole (Subarea 4 and divisions 3.a and 7.d)

NSAC members note that the described decline in lemon sole is not reflected in industry reports. Industry experience does not indicate a similar reduction, suggesting a mismatch between assessments and on-the-ground observations. Additionally, significant management changes for lemon sole, witch, turbot, and brill may have altered fishing patterns, further complicating the interpretation of trends. This stock highlights the importance of incorporating fishers' knowledge and experience into scientific assessments to produce outcomes that better reflect reality. Members strongly support conducting a benchmark assessment as soon as possible. They also emphasize the need for improved data collection to either move the stock out of Category 3 or support the development of a multi-annual harvest control rule (HCR). It was noted that Scotland is participating in a Fishery Improvement Project to address data gaps for this stock. Overall, members express strong interest in exploring alternative HCRs to reduce reliance on model-derived advice and ensure more stable, transparent management.

Plaice (eastern English Channel (7.d))

NSAC members raise concerns about inconsistencies in the survivability rates used by ICES. Specifically, ICES applies a 50% survivability rate in Division 7d, but 0% in Division 7e, which members consider both inconsistent and scientifically questionable. NSAC acknowledges the ongoing ICES work to improve survivability estimates and encourages continued progress on this front. Additionally, the NSAC notes that fishers operating in the region do not observe the perceived increase in plaice abundance in the North Sea, suggesting a potential disconnect between scientific assessments and industry experience. While members agree in principle with a reduction in catch advice for Division 7d plaice, they believe the proposed 56% cut is excessive and not fully supported by observations from the fishery.

Plaice (Subarea 4 (North Sea) and Subdivision 20 (Skagerrak))

NSAC members express concern that the reported increase in biomass may be based on incorrect assumptions, as fishers' observations do not support this assessment. There is apprehension that ICES might later recognize this overestimation and subsequently issue significant corrections or even recommend a zero catch. NSAC acknowledges ICES's indication that additional sources of natural mortality, currently unaccounted for, could explain the discrepancy and the apparent biomass increase. Members also raise concerns about the growth rate of plaice, noting it appears suboptimal where even 6- to 8-year-old plaice often fail to reach the minimum landing size.

Saithe (North Sea, Rockall and West of Scotland, Skagerrak and Kattegat (4,6,3.a))

NSAC members express concern over the large variability in catch advice and note that the overly optimistic advice in 2024 did not adequately account for changes in weight at age, particularly following the recent benchmark. NSAC acknowledges ICES's clarification that weight-at-age data are updated annually. While in some cases these values may remain constant, they are generally revised based on the latest sampling data. This year's assessment reflects a declining trend in weight at age that emerged after the benchmark. Despite this, NSAC remains sceptical of the current assessment and looks forward to the planned MSE for this stock in 2026.

Northern Shrimp (Divisions 3.a and 4.a East (Skagerrak and Kattegat and northern North Sea in the Norwegian Deep))

NSAC expresses serious concern regarding this stock, as fishers' observations do not appear to align with the ICES assessment. Members reiterate concerns that scientific surveys are not conducted consistently or at appropriate speeds. For example, trawls with small meshes require slow towing speeds, where fishing boats tow at speeds of 1 to 2 knots, while the survey

vessels operate at 3 to 4 knots. This increased speed creates a pressure wave that can push shrimp away, leading to underestimation in survey catches. Over the years, survey towing speeds have increased, which raises questions about data comparability.

Members also note that the survey methodology has changed repeatedly — from an autumn survey to a January survey, among other adjustments — making it difficult to consider the survey fully consistent over time. Such frequent changes challenge the claim that the survey is conducted in the same manner year after year.

In recent years, the stock has shifted into shallower waters, and fishers report observing higher densities daily at sea. Catch rates are historically high. This contrasts with the scientific assessment, which reports the lowest TAC in history despite biomass estimates being higher. This disconnect raises concerns that the stock's true status may not be accurately reflected.

If natural stock fluctuations occur as expected, there is a risk of the biomass dropping to low levels, leading to zero catch advice and potentially harming important fisheries. These fisheries are not only economically significant but also hold cultural value for the involved countries.

Sole (Subdivisions 20–24 (Skagerrak and Kattegat, western Baltic Sea))

NSAC expresses strong concern that the zero-catch advice was issued without any prior warning, describing it as a disaster for communities dependent on the fishery. Members do not recognize this situation as justified and feel it contradicts last year's assessment. While the data itself is not being questioned, the assessment methodology and interpretation are.

NSAC also notes that much of the sole caught in the southern part of the area, particularly in Subdivision 22 (in 2024 accounting for app. 50% of the catches), is now prohibited due to recently imposed management measures. Consequently, sole fishing effort has shifted to Division 3a (Subdivisions 20 and 21).

Whiting (North Sea and eastern English Channel (4 and 7.d))

NSAC noted that a further increase in whiting abundance is likely, given that the current uptake is at 20%. In general, members expressed concern about the high abundance of whiting and its voracious predatory behaviour, particularly its impact on cod populations. This predation may help explain the limited recruitment of cod and other roundfish species, and impact the brown shrimp fishery, where catches have decreased over the years. For example, a 25 cm whiting can easily consume a 15 cm cod, exerting significant predation pressure on several fish stocks. To reduce predation from whiting on critical stocks like cod and brown shrimp, it should be considered whether additional measures should be taken, example allowing a more targeted fishery for whiting in the North Sea.

Whiting (Skagerrak and Kattegat, Division 3a)

The NSAC calls for a thorough scrutiny of whiting in 3a, where the stock is considered to be data deficient. It is incomprehensible for industry that whiting in 3a, where there is no directed fishery for it, has such a bad status when it is growing in 4. The industry suspects that whiting in 3a is part of the North Sea stock and would like to see this confiremd or rejected at a benchmark as soon as possible. With the high abundance of whiting in 3a and the very low quota, there is an increasing risk of the species becoming a choke.

3 Conclusion

Scientific advice for the North Sea, Skagerrak, and Kattegat indicates positive trends, with many fish stocks showing stability and recovery. This progress benefits from stronger stakeholder involvement throughout the advisory process, improving the incorporation of industry observations and advancing EBFM. Where scientific assessments deviate from fishers' observations and views, we provide stock-specific advice. The NSAC stresses that scientific advice should be viewed as an iterative process requiring transparency, consistency, and integration of real-world knowledge.

NSAC would like to remind managers to consider the full scope of ICES advice—including risk-based catch scenarios—not just headline advice, to better account for uncertainties and trade-offs. They emphasize the urgent need to embed ecosystem, including climate and social considerations into fisheries management, noting shifting stock distributions and productivity, and related socio-economic costs. Greater collaboration between scientists and fishers, such as joint surveys and continuous monitoring, would reduce variability in advice and ensure greater consistency.

Concerns were raised about delays and inconsistencies in ICES assessments, particularly for North Sea cod, sole, and turbot, which undermine management effectiveness and stakeholder confidence. NSAC advocates expanding benchmark processes to include non-fishing impacts like predation and competition and supports transitioning to multiannual EBFM frameworks.

Finally, NSAC welcomes ongoing dialogue with the European Commission and urges it to champion these recommendations in international consultations to improve fisheries management across the region. The NSAC thanks the Commission for the opportunity to comment on the scientific basis of the ICES advice and provide observations on the process of defining fishing opportunities for 2026. For further engagement or clarifications regarding this advice, we invite your services to contact us bilaterally.